

Description

The HCPL-90xx and HCPL-09xx CMOS digital isolators feature high speed performance and excellent transient immunity specifications. The symmetric magnetic coupling barrier gives these devices a typical pulse width distortion of 2 ns , a typical propagation delay skew of 4 ns and 100 Mbaud data rate, making them the industry's fastest digital isolators.

The single channel digital isolators (HCPL-9000/-0900) features an active-low logic output enable. The dual channel digital isolators are configured as unidirectional (HCPL-9030/-0930) and bidirectional (HCPL-9031/-0931), operating in full duplex mode making it ideal for digital fieldbus applications.

The quad channel digital isolators are configured as unidirec-

Agilent HCPL-9000/-0900, -9030/-0930, HCPL-9031/-0931, -900J/-090J, HCPL-901J/-091J, -902J/-092J High Speed Digital Isolators Data Sheet

tional (HCPL-900J/-090J), two channels in one direction and two channels in opposite direction (HCPL-901J/-091J), and one channel in one direction and three channels in opposite direction (HCPL-902J/-092J). These high channel density make them ideally suited to isolating data conversion devices, parallel buses and peripheral interfaces.

They are available in 8-pin PDIP, 8-pin Gull Wing, 8-pin SOIC packages, and $16-$ pin SOIC narrow-body and wide-body packages. They are specified over the temperature range of $-40^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$.

CAUTION: It is advised that normal static precautions be taken in handling and assembly of this component to prevent damage and/or degradation, which may be induced by ESD.

Features

- +3.3V and +5V TTL/CMOS compatible
- 3 ns max. pulse width distortion
- 6 ns max. propagation delay skew
- 15 ns max. propagation delay
- High speed: 100 MBd
- $15 \mathrm{kV} / \mu \mathrm{s}$ min. common mode rejection
- Tri-state output (HCPL-9000/-0900)
- 2500 V RMS isolation
- UL1577 and IEC 61010-1 approved

Applications

- Digital fieldbus isolation
- Multiplexed data transmission
- Computer peripheral interface
- High speed digital systems
- Isolated data interfaces
- Logic level shifting

Agilent Technologies

Selection Guide

Device Number	Channel Configuration	Package
HCPL-9000	Single	8-pin DIP (300 Mil)
HCPL-0900	Single	8-pin Small Outline
HCPL-9030	Dual	8-pin DIP (300 Mil)
HCPL-0930	Dual	8-pin Small Outline
HCPL-9031	Dual, Bi-Directional	8-pin DIP (300 Mil)
HCPL-0931	Dual, Bi-Directional	8-pin Small Outline
HCPL-900J	Quad	16-pin Small Outline, Wide Body
HCPL-090J	Quad	16-pin Small Outline, Narrow Body
HCPL-901J	Quad, 2/2, Bi-Directional	16-pin Small Outline, Wide Body
HCPL-091J	Quad, 2/2, Bi-Directional	16-pin Small Outline, Narrow Body
HCPL-902J	Quad, 1/3, Bi-Directional	16-pin Small Outline, Wide Body
HCPL-092J	Quad, 1/3, Bi-Directional	16-pin Small Outline, Narrow Body

Ordering Information

Specify Part Number followed by Option Number (if desired).
Examples:
HCPL-90xx-xxxx
xxxx:
No option $=300$ Mil PDIP-8 package, 50 units per tube. $300=$ Gull Wing Surface Mount Option, 50 units per tube.
$500=$ Tape and Reel Packaging Option, 1000 units per reel. xxxE = Lead-free Option.

HCPL-09xx-xxxx

xxxx:

No option = SO-8 package, 100 units per tube.
$500=$ Tape and Reel Packaging Option, 1500 units per reel. xxxE = Lead-free Option.

HCPL-90xJ-xxxx

xxxx:

No option = Wide Body SOIC-16 package, 50 units per tube. $500=$ Tape and Reel Packaging Option, 1000 units per reel. xxxE = Lead-free Option.

HCPL-09xJ-xxxx
xxxx:
No option = Narrow Body SOIC-16 package, 50 per tube. $500=$ Tape and Reel Packaging Option, 1000 units per reel. $\mathrm{xxxE}=$ Lead-free Option.

Pin Description

Symbol	Description
$\mathrm{V}_{\mathrm{DD} 1}$	Power Supply 1
$\mathrm{V}_{\mathrm{DD} 2}$	Power Supply 2
IN_{X}	Logic Input Signal
$\mathrm{OUT}_{\mathrm{X}}$	Logic Output Signal
GND_{1}	Power Supply Ground 1
GND_{2}	Power Supply Ground 2
$\mathrm{V}_{\overline{\mathrm{OE}}}$	Logic Output Enable
NC	(Single Channel), Active Low

Functional Diagrams

Single Channel

Truth Table

$\mathbf{I N}_{\mathbf{1}}$	$\mathbf{V}_{\overline{\mathbf{O E}}}$	OUT $_{\mathbf{1}}$
L	L	L
H	L	H
L	H	Z
H	H	Z

Dual Channel

Quad Channel

Package Outline Drawings

HCPL-9000, HCPL-9030 and HCPL-9031 Standard DIP Packages

HCPL-9000, HCPL-9030 and HCPL-9031 Gull Wing Surface Mount Option 300

HCPL-0900, HCPL-0930 and HCPL-0931 Small Outline S0-8 Package

DIMENSIONS: INCHES (MILLIMETERS) $\frac{\text { MIN }}{\text { MAX }}$

HCPL-900J, HCPL-901J and HCPL-902J Wide Body SOIC-16 Package

DIMENSIONS: INCHES (MILLIMETERS) $\frac{\text { MIN }}{\text { MAX }}$

HCPL-090J, HCPL-091J and HCPL-092J Narrow Body SOIC-16 Package

DIMENSIONS: INCHES (MILLIMETERS) $\frac{\text { MIN }}{\text { MAX }}$

Package Characteristics

Parameter	Symbol	Min.	Typ.	Max.	Units	Test Conditions
Capacitance (Input-Output) ${ }^{[1]}$	C_{1-0}				pF	$\mathrm{f}=1 \mathrm{MHz}$
Single Channel			1.1			
Dual Channel			2.0			
Quad Channel			4.0			
Thermal Resistance	$\theta_{\text {JCT }}$				${ }^{\circ} \mathrm{C} / \mathrm{W}$	Thermocouple located at
8-Pin PDIP			150			center underside of package
8-Pin SOIC			240			
Package Power Dissipation	$\mathrm{P}_{\text {PD }}$				mW	
8-Pin PDIP				150		
8-Pin SOIC				150		

Notes:

1. Single and dual channels device are considered two-terminal devices: pins $1-4$ shorted and pins $5-8$ shorted. Quad channel devices are considered two-terminal devices: pins 1-8 shorted and pins $9-16$ shorted.

This product has been tested for electrostatic sensitivity to the limits stated in the specifications. However, Agilent recommends that all integrated circuits be handled with appropriate care to avoid damage. Damage caused by inappropriate handling or storage could range from performance degradation to complete failure.

Insulation and Safety Related Specifications

Parameters	Condition	Min.	Тур.	Max.	Units	
Barrier Impedance					$\Omega \\| \mathrm{pF}$	
Single Channel			$>10^{14}\| \| 3$			
Dual Channel			$>10^{14}\| \| 3$			
Quad Channel			$>10^{14} \\| 7$			
Creepage Distance (External)					mm	
8-Pin PDIP		7.036				
8 -Pin SOIC		4.026				
16-Pin SOIC Narrow Body		4.026				
16-Pin SOIC Wide Body		8.077				
Leakage Current	$\begin{aligned} & 240 \mathrm{~V}_{\text {RMS }} \\ & 60 \mathrm{~Hz} \end{aligned}$		0.2		$\mu \mathrm{A}$	

Absolute Maximum Ratings

Parameters	Symbol	Min.	Max.	Units
Storage Temperature	T_{S}	-55	175	${ }^{\circ} \mathrm{C}$
Ambient Operating Temperature ${ }^{[1]}$	T_{A}	-55	125	${ }^{\circ} \mathrm{C}$
Supply Voltage	$\mathrm{V}_{\mathrm{DD} 1}, \mathrm{~V}_{\mathrm{DD} 2}$	-0.5	7	V
Input Voltage	$\mathrm{V}_{\text {IN }}$	-0.5	$\mathrm{~V}_{\mathrm{DD} 1}+0.5$	V
Voltage Output Enable (HCPL-9000/-0900)	$\mathrm{V}_{\overline{\text { OE }}}$	-0.5	$\mathrm{~V}_{\mathrm{DD} 2}+0.5$	V
Output Voltage	$\mathrm{V}_{\text {OUT }}$	-0.5	$\mathrm{~V}_{\mathrm{DD} 2}+0.5$	V
Output Current Drive	$\mathrm{I}_{\text {OUT }}$	10	mA	
Lead Solder Temperature $(10 \mathrm{~s})$		260	${ }^{\circ} \mathrm{C}$	
ESD	2 kV Human Body Model			

Notes:

1. Absolute Maximum ambient operating temperature means the device will not be damaged if operated under these conditions. It does not guarantee performance.

Recommended Operating Conditions

Parameters	Symbol	Min.	Max.	Units
Ambient Operating Temperature	T_{A}	-40	100	${ }^{\circ} \mathrm{C}$
Supply Voltage	$\mathrm{V}_{\mathrm{DD} 1}, \mathrm{~V}_{\mathrm{DD} 2}$	3.0	5.5	V
Logic High Input Voltage	V_{IH}	2.4	$\mathrm{~V}_{\mathrm{DD} 1}$	V
Logic Low Input Voltage	V_{IL}	0	0.8	V
Input Signal Rise and Fall Times	$\mathrm{t}_{\mathrm{IR}}, \mathrm{t}_{\mathrm{IF}}$		1	$\mu \mathrm{~s}$

This product has been tested for electrostatic sensitivity to the limits stated in the specifications. However, Agilent recommends that all integrated circuits be handled with appropriate care to avoid damage. Damage caused by inappropriate handling or storage could range from performance degradation to complete failure.

Electrical Specifications

Test conditions that are not specified can be anywhere within the recommended operating range.
All typical specifications are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD} 1}=\mathrm{V}_{\mathrm{DD} 2}=+3.3 \mathrm{~V}$.

Parameter	Symbol	Min.	Typ.	Max.	Units	Test Conditions
Quiescent Supply Current 1	$\mathrm{I}_{\mathrm{DD} 1}$				mA	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$
HCPL-9000/-0900			0.008	0.01		
HCPL-9030/-0930			0.008	0.01		
HCPL-9031/-0931			1.5	2.0		
HCPL-900J/-090J			0.016	0.02		
HCPL-901J/-091J			3.3	4.0		
HCPL-902J/-092J			1.5	2.0		
Quiescent Supply Current 2	$\mathrm{I}_{\text {DD2 }}$				mA	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$
HCPL-9000/-0900			3.3	4.0		
HCPL-9030/-0930			3.3	4.0		
HCPL-9031/-0931			1.5	2.0		
HCPL-900J/-090J			5.5	8.0		
HCPL-901J/-091J			3.3	4.0		
HCPL-902J/-092J			3.0	6.0		
Logic Input Current	I_{N}	-10		10	$\mu \mathrm{A}$	
Logic High Output Voltage	V_{OH}	$\mathrm{V}_{\mathrm{DD} 2}-0.1$	$V_{\text {DD2 }}$		V	$\mathrm{I}_{\text {OUT }}=-20 \mu \mathrm{~A}, \mathrm{~V}_{\text {IN }}=\mathrm{V}_{\text {IH }}$
		${ }^{0.8 *} \mathrm{~V}_{\text {DD2 }}$	$\mathrm{V}_{\text {DD } 2}-0.5$		V	$\mathrm{I}_{\text {OUT }}=-4 \mathrm{~mA}, \mathrm{~V}_{\text {IN }}=\mathrm{V}_{\text {IH }}$
Logic Low Output Voltage	$\mathrm{V}_{0 \mathrm{~L}}$		0	0.1	V	$\mathrm{I}_{\text {OUT }}=20 \mu \mathrm{~A}, \mathrm{~V}_{\text {IN }}=\mathrm{V}_{\text {IL }}$
			0.5	0.8	V	$\mathrm{I}_{\text {OUT }}=4 \mathrm{~mA}, \mathrm{~V}_{\text {IN }}=\mathrm{V}_{\text {IL }}$
Switching Specifications						
Maximum Data Rate		100	110		MBd	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$
Clock Frequency	fmax			50	MHz	
Propagation Delay Time to Logic Low Output	$\mathrm{t}_{\text {PHL }}$		12	18	ns	
Propagation Delay Time toLogic High Output	${ }_{\text {tPLH }}$		12	18	ns	
Pulse Width	tpw	10			ns	
$\begin{aligned} & \text { Pulse Width Distortion }{ }^{[1]} \\ & \left\|t_{\text {PHL }}-t_{\text {PLH }}\right\| \end{aligned}$	\|PWD \mid		2	3	ns	
Propagation Delay Skew ${ }^{[2]}$	$\mathrm{t}_{\text {PSK }}$		4	6	ns	
Output Rise Time (10-90\%)	t_{R}		2	4	ns	
Output Fall Time ($10-90 \%$)	t_{F}		2	4	ns	
Propagation Delay Enable to Output (Single Channel)						
High to High Impedance	$\mathrm{t}_{\text {PHZ }}$		3	5	ns	
Low to High Impedance	$\mathrm{t}_{\text {PLZ }}$		3	5	ns	
High Impedance to High	tpzH		3	5	ns	
High Impedance to Low	$\mathrm{t}_{\text {PzL }}$		3	5	ns	
Channel-to-Channel Skew (Dual and Quad Channels)	${ }^{\text {c CSK }}$		2	3	ns	
Common Mode Transient Immunity (Output Logic High or Logic Low) ${ }^{[3]}$	$\begin{aligned} & \left\|\mathrm{CM}_{\mathrm{H}}\right\| \\ & \left\|\mathrm{CM}_{\mathrm{L}}\right\| \end{aligned}$	15	18		kV/ $/$ s	$\mathrm{V}_{\mathrm{cm}}=1000 \mathrm{~V}$

Notes:

1. PWD is defined as $\left|t_{P H L}{ }^{-t_{P L H}}\right| . \% P W D$ is equal to the PWD divided by the pulse width.
2. $t_{\text {PSK }}$ is equal to the magnitude of the worst case difference in $t_{P H L}$ and $/$ or $t_{\text {PLH }}$ that will be seen between units at $25^{\circ} \mathrm{C}$.
3. CM_{H} is the maximum common mode voltage slew rate that can be sustained while maintaining $\mathrm{V}_{\mathrm{OUT}}>0.8 \mathrm{~V}_{\mathrm{DD} 2}$. CM_{L} is the maximum common mode input voltage that can be sustained while maintaining $\mathrm{V}_{\text {OUT }}<0.8 \mathrm{~V}$. The common mode voltage slew rates apply to both rising and falling common mode voltage edges.
This product has been tested for electrostatic sensitivity to the limits stated in the specifications. However, Agilent recommends that all integrated circuits be handled with appropriate care to avoid damage. Damage caused by inappropriate handling or storage could range from performance degradation to complete failure.

Electrical Specifications

Test conditions that are not specified can be anywhere within the recommended operating range.
All typical specifications are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD} 1}=\mathrm{V}_{\mathrm{DD} 2}=+5.0 \mathrm{~V}$.

Parameter	Symbol	Min.	Typ.	Max.	Units	Test Conditions
Quiescent Supply Current 1	$I_{\text {DD1 }}$				mA	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$
HCPL-9000/-0900			0.012	0.018		
HCPL-9030/-0930			0.012	0.018		
HCPL-9031/-0931			2.5	3.0		
HCPL-900J/-090J			0.024	0.036		
HCPL-901J/-091J			5.0	6.0		
HCPL-902J/-092J			2.5	3.0		
Quiescent Supply Current 2	$\mathrm{I}_{\text {DD2 }}$				mA	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$
HCPL-9000/-0900			5.0	6.0		
HCPL-9030/-0930			5.0	6.0		
HCPL-9031/-0931			2.5	3.0		
HCPL-900J/-090J			8.0	12.0		
HCPL-901J/-091J			5.0	6.0		
HCPL-902J/-092J			6.0	9.0		
Logic Input Current	$\mathrm{I}_{\text {IN }}$	-10		10	$\mu \mathrm{A}$	
Logic High Output Voltage	V_{OH}	$\mathrm{V}_{\mathrm{DD} 2}-0.1$	$V_{\text {DD2 }}$		V	$\mathrm{I}_{\text {OUT }}=-20 \mu \mathrm{~A}, \mathrm{~V}_{\text {IN }}=\mathrm{V}_{\text {IH }}$
		$0.8 * V_{\text {DD2 }}$	$\mathrm{V}_{\mathrm{DD} 2}-0.5$		V	$\mathrm{I}_{\text {OUT }}=-4 \mathrm{~mA}, \mathrm{~V}_{\text {IN }}=\mathrm{V}_{\text {IH }}$
Logic Low Output Voltage	V_{01}		0	0.1	V	$\mathrm{I}_{\text {OUT }}=20 \mu \mathrm{~A}, \mathrm{~V}_{\text {IN }}=\mathrm{V}_{\text {IL }}$
			0.5	0.8	V	$\mathrm{I}_{\text {OUT }}=4 \mathrm{~mA}, \mathrm{~V}_{\text {IN }}=\mathrm{V}_{\text {IL }}$

Switching Specifications

Maximum Data Rate		100	110		MBd	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	
Clock Frequency	fmax			50	MHz		
Propagation Delay Time to Logic Low Output	$\mathrm{t}_{\text {PHL }}$		10	15	ns		
Propagation Delay Time to Logic High Output	$\mathrm{t}_{\text {PLH }}$		10	15	ns		
Pulse Width	$t_{\text {PW }}$	10			ns		
Pulse Width Distortion ${ }^{[1]}$ $\left\|t_{\text {PHL }}-t_{\text {PLH }}\right\|$	\|PWD			2	3	ns	
Propagation Delay Skew ${ }^{[2]}$	$\mathrm{t}_{\text {PSK }}$		4	6	ns		
Output Rise Time (10-90\%)	t_{R}		1	3	ns		
Output Fall Time (10-90\%)	t_{F}		1	3	ns		
Propagation Delay Enable to Output (Single Channel)							
High to High Impedance	$\mathrm{t}_{\text {PHZ }}$		3	5	ns		
Low to High Impedance	$\mathrm{t}_{\text {PLZ }}$		3	5	ns		
High Impedance to High	$\mathrm{t}_{\text {PZH }}$		3	5	ns		
High Impedance to Low	$\mathrm{t}_{\text {PZL }}$		3	5	ns		
Channel-to-Channel Skew (Dual and Quad Channels)	$\mathrm{t}_{\text {CSK }}$		2	3	ns		
Common Mode Transient Immunity (Output Logic High or Logic Low) ${ }^{[3]}$	$\begin{aligned} & \left\|\mathrm{CM}_{\mathrm{H}}\right\| \\ & \left\|\mathrm{CM}_{\mathrm{L}}\right\| \end{aligned}$	15	18		kV/ $\mu \mathrm{s}$	$\mathrm{V}_{\mathrm{cm}}=1000 \mathrm{~V}$	

Notes:

1. PWD is defined as $\left|t_{\text {PHL }}-\mathrm{t}_{\text {PLH }}\right| . \% P W D$ is equal to the PWD divided by the pulse width.
2. $\mathrm{t}_{\text {PSK }}$ is equal to the magnitude of the worst case difference in $\mathrm{t}_{\mathrm{PHL}}$ and/or $\mathrm{t}_{\text {PLH }}$ that will be seen between units at $25^{\circ} \mathrm{C}$.
3. CM_{H} is the maximum common mode voltage slew rate that can be sustained while maintaining $\mathrm{V}_{\mathrm{OUT}}>0.8 \mathrm{~V}_{\mathrm{DD} 2}$. CM_{L} is the maximum common mode input voltage that can be sustained while maintaining $\mathrm{V}_{\text {OUT }}<0.8 \mathrm{~V}$. The common mode voltage slew rates apply to both rising and falling common mode voltage edges.

This product has been tested for electrostatic sensitivity to the limits stated in the specifications. However, Agilent recommends that all integrated circuits be handled with appropriate care to avoid damage. Damage caused by inappropriate handling or storage could range from performance degradation to complete failure.

Applications Information

Power Consumption

The HCPL-90xx and HCPL-09xx CMOS digital isolators achieves low power consumption from the manner by which they transmit data across isolation barrier. By detecting the edge transitions of the input logic signal and converting this to a narrow current pulse, which drives the isolation barrier, the isolator then latches the input logic state in the output latch. Since the current pulses are narrow, about 2.5 ns wide, the power consumption is independent of mark-to-space ratio and solely dependent on frequency.

The approximate power supply current per channel is: I (Input) $=40(\mathrm{f} / \mathrm{fmax})(1 / 4) \mathrm{mA}$ where $\mathrm{f}=$ operating frequency, fmax $=50 \mathrm{MHz}$.

Signal Status on Start-up and Shut Down

To minimize power dissipation, the input signals to the channels of HCPL-90xx and HCPL-09xx digital isolators are differentiated and then latched on the output side of the isolation barrier to reconstruct the signal. This could result in an ambiguous output state depending on power up, shutdown and power loss sequencing. Therefore, the designer should consider the inclusion of an initialization signal in this start-up circuit.

Bypassing and PC Board Layout

 The HCPL-90xx and HCPL-09xx digital isolators are extremely easy to use. No external interface circuitry is required because the isolators use high-speed CMOS IC technology allowing CMOS logicto be connected directly to the inputs and outputs. As shown in Figure 1, the only external components required for proper operation are two 47 nF ceramic capacitors for decoupling the power supplies. For each capacitor, the total lead length between both ends of the capacitor and the power-supply pins should not exceed 20 mm . Figure 2 illustrates the recommended printed circuit board layout for the HCPL-9000 or HCPL-0900. For data rates in excess of 10 MBd , use of ground planes for both GND_{1} and GND_{2} is highly recommended.

Note: C1, C2 $=47 \mathrm{nF}$ ceramic capacitors

Figure 1. Functional Diagram of Single Channel HCPL-0900 or HCPL-0900.

Figure 2. Recommended Printed Circuit Board Layout.

Propagation Delay, Pulse Width

 Distortion and Propagation Delay Skew Propagation Delay is a figure of merit, which describes how quickly a logic signal propagates through a system as illustrated in Figure 3.The propagation delay from low to high, $\mathrm{t}_{\text {PLH }}$, is the amount of time required for an input signal to propagate to the output, causing the output to change from low to high. Similarly, the propagation delay from high to low, $\mathrm{t}_{\mathrm{PHL}}$, is the amount of time required for the input signal to propagate to the output, causing the output to change from high to low.

Pulse Width Distortion, PWD, is the difference between $\mathrm{t}_{\mathrm{PHL}}$ and $t_{\text {PLH }}$ and often determines the maximum data rate capability of a transmission system. PWD can be expressed in percent by dividing the PWD (in ns) by the minimum pulse width (in ns) being transmitted. Typically, PWD on the order of $20-30 \%$ of the minimum pulse width is tolerable.

Propagation Delay Skew, $\mathrm{t}_{\mathrm{PSK}}$, and Channel-to-Channel Skew, $\mathrm{t}_{\mathrm{CSK}}$, are critical parameters to consider in parallel data transmission applications where synchronization of signals on parallel data lines is a concern.

Figure 3. Timing Diagrams to Illustrate Propagation Delay, $\mathrm{t}_{\mathrm{PLH}}$ and $\mathbf{t}_{\mathrm{PHL}}$.

Figure 5. Parallel Data Transmission.

Figure 4. Timing Diagrams to Illustrate
Propagation Delay Skew.

If the parallel data is being sent through channels of the digital isolators, differences in propagation delays will cause the data to arrive at the outputs of the digital isolators at different times. If this difference in propagation delay is large enough, it will limit the maximum transmission rate at which parallel data can be sent through the digital isolators.
$\mathrm{t}_{\mathrm{PSK}}$ is defined as the difference between the minimum and maximum propagation delays, either $t_{\text {PLH }}$ or $t_{\text {PHL }}$, among two or more devices which are operating under the same conditions (i.e., the same drive current, supply voltage, output load, and operating temperature). $\mathrm{t}_{\mathrm{CSK}}$ is defined as the difference between the minimum and maximum propagation delays, either $t_{\text {PLH }}$ or $t_{\text {PHL }}$, among two or more channels within a single device (applicable to dual and quad channel devices) which are operating under the same conditions.

As illustrated in Figure 4, if the inputs of two or more devices are switched either ON or OFF at the same time, $\mathrm{t}_{\mathrm{PSK}}$ is the difference between the minimum propagation delay, either $t_{\text {PLH }}$ or $t_{\text {PHL }}$, and the maximum propagation delay, either $t_{\text {PLH }}$ or $t_{\text {PHL }}$.

As mentioned earlier, $\mathrm{t}_{\mathrm{PSK}}$, can determine the maximum parallel data transmission rate. Figure 5 shows the timing diagram of a typical parallel data transmission application with both the clock and data lines being sent through the digital isolators. The figure shows data and clock signals at the inputs and outputs of the digital isolators. In this case, the data is clocked off the rising edge of the clock.

Propagation delay skew represents the uncertainty of where an edge might be after being sent through a digital isolator. Figure 5 shows that there will be uncertainty in both the data and clock lines. It is important that these two areas of uncertainty not overlap, otherwise the clock signal might arrive before all of
the data outputs have settled, or some of the data outputs may start to change before the clock signal has arrived. From these considerations, the absolute minimum pulse width that can be sent through digital isolators in a parallel application is twice $t_{\text {PSK }}$. A cautious design should use a slightly longer pulse width to
ensure that any additional uncertainty in the rest of the circuit does not cause a problem.

Figure 6 shows the minimum pulse width, rise and fall time, and propagation delay enable to output waveforms for HCPL-9000 or HCPL-0900.

$\mathbf{t}_{\text {PW }}$	Minimum Pulse Width	$\mathbf{t}_{\text {PHZ }}$	Propagation Delay, High to High Impedance
$\mathbf{t}_{\text {PLZ }}$	Propagation Delay, Low to High Impedance	$\mathbf{t}_{\text {PZL }}$	Propagation Delay, High Impedance to Low
$\mathbf{t}_{\text {PZH }}$	Propagation Delay, High Impedance to High	$\mathbf{t}_{\mathbf{R}}$	Rise Time
		$\mathbf{t}_{\mathbf{F}}$	Fall Time

Figure 6. Timing Diagrams to Illustrate the Minimum Pulse Width, Rise and Fall Time, and Propagation Delay Enable to Output Waveforms for HCPL-9000 or HCPL-0900.

www.agilent.com/semiconductors

For product information and a complete list of
distributors, please go to our web site.
For technical assistance call:
Americas/Canada: +1 (800) 235-0312 or
(916) 788-6763

Europe: +49 (0) 644192460
China: 108006500017
Hong Kong: (65) 67562394
India, Australia, New Zealand: (65) 67551939
Japan: (+81 3) 3335-8152(Domestic/International), or 0120-61-1280(Domestic Only)
Korea: (65) 67551989
Singapore, Malaysia, Vietnam, Thailand, Philippines,
Indonesia: (65) 67552044
Taiwan: (65) 67551843
Data subject to change.
Copyright © 2004 Agilent Technologies, Inc.
Obsoletes 5988-5626EN
February 24, 2004
5989-0803EN

